Diagnosis and Management of Prostate Cancer

Rod Studd
Urologist
CCDHB
Urology Care Wellington
Summary

1. Diagnostic Workup
 pre-biopsy MRI, prostate biopsy techniques, minimizing biopsy risk, staging scans

2. Risk Adjusted Management
 – Watchful waiting
 – Active Surveillance
 – Surgical Management – the pro’s and con’s

(Scott to cover primary radiotherapy, adjuvant and salvage radiotherapy)
Prostate Cancer,

a spectrum of disease
Growing old is invariably fatal while prostate cancer is only sometimes so.

Most prostate cancers provide just a small threat to the man
4 Rules of Thumb for Improving the Balance of Harm versus Benefit

1. Inform the man: Disease threat, Benefit and Risks of the Tests and the Treatment
2. Screen the right people
3. Biopsy the right people
4. Treat the right people
DIAGNOSTIC WORKUP
PSA

- A Serine protease enzyme
- Produced by epithelium of the prostate gland
- Liquefies the ejaculate
- Rises with prostate size, inflammation and cancer
- 5-7 year lead time in diagnosis of cancer
- Also has a role in cancer proliferation and metastasis
There is a direct relationship between PSA level and risk of prostate cancer.

Fig 1 Lifetime risk of clinically diagnosed prostate cancer or prostate cancer metastasis.
The DRE

- Worth incorporating into your clinical evaluation as some benefits:
 - Allows assessment of prostate size
 - Presence of a nodule will lower your threshold for referral
 - There are some cancers – usually HIGH grade which do not produce much PSA. DRE may find these

However:
- Less sensitive than PSA
- The ERSPC did not use DRE, just PSA..
- Unpleasant!
What is the Trigger for Further Evaluation?

Key Points

• PSA can be elevated for several reasons: physiologic variation often occurs - up to 20% of elevated values will return to baseline within 1 year – REPEAT THE TEST

• Consider age, prostate volume, nodularity and possibility of inflammation to determine need for biopsy – CHECK UTI HISTORY, DO MSU

• NO evidence for use of antibiotics to reduce PSA in assymptomatic men

• 3ng/mL was the trigger in the ERSPC
I generally use the age specific reference ranges:

- 40’s: median 0.7ng/mL. 95th centile 2.5ng/mL
- 50’s: median 0.9ng/mL. 95th centile 3.5ng/mL
- 60’s: median 1.2ng/mL. 95th centile 4.5ng/mL
- 70’s: median 1.5ng/mL. 95th centile 6.5ng/mL
Diagnostic Workup

• Assume now that the man is suitable for PSA screening, has agreed to it and has two elevated PSA levels...

• What is the next step?
Biopsy or Multi-Parametric MRI scan?

Biopsy
- Allows a definite diagnosis to be made & MRI cannot do this

But..
- invasive and has morbidity
- Usually ‘undirected’
- Anterior prostate relatively under-sampled with transrectal technique
- May detect insignificant cancers
- May miss significant cancers
mpMRI

Combination of:

• High resolution T2 weighted images

And at least two functional MRI techniques:

• Diffusion weighted imaging (DWI)

• Dynamic contrast enhanced imaging (DCE)

• ADC maps
MRI Prostate

• High sensitivity for clinically significant disease
 – A negative MRI gives great confidence that we are not missing a life threatening cancer
• Low sensitivity for clinically insignificant disease
 – May therefore help reduce overtreatment
• Allows evaluation of the entire gland
• Potentially reduces the number of men needing biopsy by 50%
• An abnormality can be targeted by biopsy – usually transperineal which allows better targeting
• Reduces the diagnosis of low risk cancer by up to 90%
• I discuss this now with patients & suggest it to men with palpably normal glands & PSA elevation
MRI Abnormalities

PIRADS v2 reporting system 1-5 score

- 1. Very low (clinically significant cancer is highly unlikely to be present)
- 2. Low (clinically significant cancer is unlikely to be present)
- 3. Intermediate (the presence of clinically significant cancer is equivocal)
- 4. High (clinically significant cancer is likely to be present)
- 5. Very high (clinically significant cancer is highly likely to be present)
BIOPSY
Transrectal Biopsy

• The original and still the most prevalent technique
 – Quick & cheapest
 – No need for GA in >90%

• But..
 – Risk of sepsis
 – Under-sampling of anterior zone
 – Directed biopsies difficult
TRUS Biopsy Missed areas:
The Impact of Repeat Biopsies on Infectious Complications in Men with Prostate Cancer on Active Surveillance

Behfar Ehdai,* Emily Vertosick,* Massimiliano Spaliviero,* Anna Giallo-Uvino,* Ying Taur,* Maryellen O’Sullivan,* Jennifer Livingston,* Pramod Sogani,* James Eastham,* Peter Scardino† and Karim Touijer*,‡

From the Urology Service, Sidney Kimmel Center for Prostate and Urologic Cancers (BE, MS, AG-U, MO, JL, PS, JE, PS, KT), Department of Epidemiology and Biostatistics (BE, EV), and Department of Medicine, Infectious Diseases Service (YT), Memorial Sloan-Kettering Cancer Center, and Department of Urology, Weill Medical College of Cornell University (PS, JE, PS, KT), New York, New York

Figure 1. Risk of post-biopsy infection by number of previous biopsies.

fluoroquinolone prophylaxis
REDUCING SEPSIS
ERTAPENEM FOR TRANSRECTAL ULTRASOUND GUIDED BIOPSY PROPHYLAXIS: INTERIM RESULTS

Dr Alice McLachlan
Capital and Coast DHB, Wellington, New Zealand
RESULTS

- August 2014 - July 2015
- 188 patients of required 326; 73% enrolment rate
- No cases of post TRUS biopsy sepsis

<table>
<thead>
<tr>
<th>Antibiotic resistance pattern</th>
<th>PRE BIOPSY SWABS</th>
<th>POST BIOPSY SWABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESBL/AmpC production (From Oct 2014)</td>
<td>8/141 (5.7%)</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Ciprofloxacin resistance (From June 2015)</td>
<td>5/24 (21%)</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Carbapenem resistance</td>
<td>0/150 (0%)</td>
<td>2/150 (1.3%)</td>
</tr>
</tbody>
</table>
ERTAPENEM RESISTANT ORGANISMS

Two organisms *Enterobacter Cloacae*: reduced sensitivity to Ertapenem

- Minimally pathogenic bacterial species
- Resistance mechanism not easily spread
- Only affecting Ertapenem, not other carbapenems
The role of transperineal template prostate biopsies in prostate cancer diagnosis in biopsy naïve men with PSA less than 20 ng ml\(^{-1}\)

S Nafie, J K Mellon, J P Dormer and M A Khan

- 50 men with a benign DRE and PSA<20 had both a standard 12 core TRUS biopsy and a transperineal template biopsy

- Cancer detection Rate:
 - TRUS 32%
 - Transperineal 60%
TRUS Versus Transperineal

TRUS
- The standard approach
- Office procedure
- X False negatives
- X Underestimation of Gleason score in 25%
- X Increasing infection

Transperineal Template
- Better access to entire gland especially anterior
- Many cores can be obtained
- Higher initial and repeat biopsy rates of cancer detection
- Reduced risk of underestimating disease volume and grade
- X GA
- X Cost
- X Equipment
- X Time
- X Retention
The Future is Directed Biopsy

- Techniques vary from:
 - ‘Cognitive’ guidance
 - MRI-USS fusion
 - MRI directed biopsy

- Practically in NZ
 - Transperineal biopsy using the brachytherapy set-up allows good ‘cognitive’ sampling
Prospective Study of Diagnostic Accuracy Comparing Prostate Cancer Detection by Transrectal Ultrasound–Guided Biopsy Versus Magnetic Resonance (MR) Imaging with Subsequent MR-guided Biopsy in Men Without Previous Prostate Biopsies

Morgan R. Pokornya, Maarten de Rooijb, c, Earl Duncand, Fritz H. Schrödere, Robert Parkinsonf, Jelle O. Barentszb, Leslie C. Thompsona, d.

\begin{itemize}
 \item MRGB Pathway Could:
 \begin{itemize}
 \item Reduce need for biopsy by 51%
 \item Decreased diagnosis of LR CaP by 89.4%
 \item Increased detection of intermediate/high grade disease by 17.7%
 \item NPV of TRUSGB for int/HR disease: 71.9%
 \item NPV of MRGB for int/HR disease 96.9%
 \end{itemize}
\end{itemize}
STAGING DISEASE
• Low Risk Disease: Gleason 6, PSA <10, Clinical Stage T1c, T2: No MRI or bone scan needed

• High Risk Disease: Gleason>7 or PSA>20 or clinical stage T3: MRI and bone scan

• Intermediate Risk Disease: Gleason 7 or PSA 10-20 or clinical stage T2b: selective use of MRI and bone scan for higher volume disease
Risk Adjusted Management of Prostate Cancer

MEANS MATCHING DISEASE THREAT TO MANAGEMENT
As we all know, prostate cancer is often slow growing and is *Not The Only Cause Of Death In Men*
Impact of Co-morbidity on Mortality for T1c CaP if aged 66-74

<table>
<thead>
<tr>
<th>Gleason</th>
<th>Co-Morbid</th>
<th>5 yr PCSM(%)</th>
<th>10 yr PCSM (%)</th>
<th>5 yr OM (%)</th>
<th>10 yr OM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-7</td>
<td>0</td>
<td>1.6</td>
<td>4.5</td>
<td>11.7</td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.1</td>
<td>2.0</td>
<td>25.3</td>
<td>50.5</td>
</tr>
<tr>
<td></td>
<td>>1</td>
<td>4.3</td>
<td>5.3</td>
<td>42.5</td>
<td>53.1</td>
</tr>
<tr>
<td>8-10</td>
<td>0</td>
<td>13.6</td>
<td>25.7</td>
<td>26.4</td>
<td>55.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11.6</td>
<td>20.2</td>
<td>30.7</td>
<td>52.0</td>
</tr>
<tr>
<td></td>
<td>>1</td>
<td>9.6</td>
<td>13.7</td>
<td>52.0</td>
<td>64.3</td>
</tr>
</tbody>
</table>

Even for aggressive CaP, twice as likely to die from other cause.
Impact of Co-morbidity on Mortality for T1c CaP if aged 66-74

<table>
<thead>
<tr>
<th>Gleason</th>
<th>Co-Morbid</th>
<th>5 yr PCSM(%)</th>
<th>10 yr PCSM (%)</th>
<th>5 yr OM (%)</th>
<th>10 yr OM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-7</td>
<td>0</td>
<td>1.6</td>
<td>4.5</td>
<td>11.7</td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.1</td>
<td>2.0</td>
<td>25.3</td>
<td>50.5</td>
</tr>
<tr>
<td></td>
<td>>1</td>
<td>4.3</td>
<td>5.3</td>
<td>42.5</td>
<td>53.1</td>
</tr>
<tr>
<td>8-10</td>
<td>0</td>
<td>13.6</td>
<td>25.7</td>
<td>26.4</td>
<td>55.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11.6</td>
<td>20.2</td>
<td>30.7</td>
<td>52.0</td>
</tr>
<tr>
<td></td>
<td>>1</td>
<td>9.6</td>
<td>13.7</td>
<td>52.0</td>
<td>64.3</td>
</tr>
</tbody>
</table>

If co-morbidity 5 times as likely to die of other causes
We need to convey to the patient the threat that their disease is to them.

Disease factors
- **Gleason score**
- **Clinical stage**
- **PSA**

Patient factors
- **Physiological age**
- **Competing causes of mortality**

Produce

‘Disease Threat’
The likelihood that this disease will threaten this patient’s life
There are usually three Management Options

1. Surveillance with a view to cure upon progression (= Active surveillance)

2. Surveillance with a view to androgen deprivation upon progression (= Watchful Waiting)

2. Curative therapies (= Surgery or Radiotherapy)
Whether to Pursue Cure?

Risk posed by
disease and
potential for cure

Potential Morbidity of Curative Therapy
ESTABLISHING DISEASE THREAT
What is the magnitude of the threat in LOWER RISK DISEASE?
6849 men <70yrs with low to intermediate risk prostate cancer identified & linked to cause of death register

70% (4828) had curative therapy
30% (2021)began active surveillance

10 year risk of dying of prostate cancer in low to intermediate risk disease:

Surveillance: 3.6% (for low risk this was 2.4%)
Curative therapy: 2.7%

10 year risk of dying of competing causes on active surveillance 19.2%
Potential Morbidity of Curative Therapy

Risk posed by disease:
LOW

Surveillance

Curative Therapy

Low Risk Disease
Active Surveillance

REVIEW & UPDATE
What’s new in Active Surveillance?

1. Greater recognition of overtreatment problem & wider acceptance of surveillance
2. Better understanding of occult high grade disease
3. Better understanding of the flaws of PSA dynamics
4. Increasing data on multi-parametric MRI
5. Longer follow up of surveillance cohorts
US Preventive Services Task Force summary on PSA screening

• ...small to no reduction in 10yr prostate cancer specific mortality: harms related to false-positive test results, subsequent evaluation, and therapy, including over-diagnosis and over-treatment

• The Task Force recommends AGAINST PSA-based screening....a Grade D recommendation
Response to USPSTF...
Head in sand, or reduce over-diagnosis & overtreatment
Over-diagnosis & Over-treatment

• A huge problem in modern medicine
• Mainly conditions where early detection is promoted
 – Breast cancer, thyroid cancer, lung cancer
• Clinically insignificant cancers found which pose no threat
Three factors promote over-diagnosis of cancer:

• Existence of a silent disease reservoir
• Activities leading to its detection
• Long natural history and hence limited cancer specific mortality

Prostate cancer fulfills these criteria!
Existence of a silent disease reservoir

- Prevalence of CaP on Autopsy:

<table>
<thead>
<tr>
<th>Age Range</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>11%</td>
</tr>
<tr>
<td>30-39</td>
<td>31%</td>
</tr>
<tr>
<td>40-49</td>
<td>38%</td>
</tr>
<tr>
<td>50-59</td>
<td>44%</td>
</tr>
<tr>
<td>60-69</td>
<td>68%</td>
</tr>
<tr>
<td>70-79</td>
<td>68%</td>
</tr>
</tbody>
</table>

Powell J Urol 183 1792-6, 2010
Long natural history and hence limited cancer specific mortality

<table>
<thead>
<tr>
<th>Gleason</th>
<th>Co-Morbid</th>
<th>5 yr PCSM (%)</th>
<th>10 yr PCSM (%)</th>
<th>5 yr OM (%)</th>
<th>10 yr OM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-7</td>
<td>0</td>
<td>1.6</td>
<td>4.5</td>
<td>11.7</td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.1</td>
<td>2.0</td>
<td>25.3</td>
<td>50.5</td>
</tr>
<tr>
<td></td>
<td>>1</td>
<td>4.3</td>
<td>5.3</td>
<td>42.5</td>
<td>53.1</td>
</tr>
<tr>
<td>8-10</td>
<td>0</td>
<td>13.6</td>
<td>25.7</td>
<td>26.4</td>
<td>55.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11.6</td>
<td>20.2</td>
<td>30.7</td>
<td>52.0</td>
</tr>
<tr>
<td></td>
<td>>1</td>
<td>9.6</td>
<td>13.7</td>
<td>52.0</td>
<td>64.3</td>
</tr>
</tbody>
</table>

If co-morbidity 5 times as likely to die of other causes
Are we changing management?

Trends in local practice match those seen internationally as illustrated by MSKCC data (solid line LR, dotted IR, light grey HR).

Localised prostate cancer management in Wellington - an evolving paradigm

Matthew Page, Daniel Marshall, Rod Studd
Wellington Regional Hospital, Wellington, NZ. Wakefield Private Hospital, Wellington, NZ. Southern Cross Private Hospital, Wellington NZ.
Rise of Active Surveillance in WGTN

Fig. 2. Increase in AS (p<0.05) for low-risk disease with a corresponding decrease in surgical management of low-risk disease.

Localised prostate cancer management in Wellington - an evolving paradigm

Matthew Page, Daniel Marshall, Rod Studd
Wellington Regional Hospital, Wellington, NZ. Wakefield Private Hospital, Wellington, NZ. Southern Cross Private Hospital, Wellington NZ.
Active Surveillance Involves:

- Identification of men at low risk of disease progression (Gleason <7, PSA <10, T2a or less, <3 cores positive, <50% of any one core +ve)
- Regular PSA, repeat biopsies
- Intervention if grade progression, stage progression or PSADT<3 yrs
- Up to 30% will eventually come to curative treatment
Follow-up

– PSA 4 monthly, annual review
– Biopsy 12 months after enrolment, then every 3-5 years. Stop at age 70 (convert to WW)
– Consider a mpMRI prior to first re-biopsy or if concerns about PSA increase or DRE changes
How should we define progression?

- Most use upgrade on re-biopsy
- PSA has limitations – lack of specificity

<table>
<thead>
<tr>
<th>Publication</th>
<th>Gleason score</th>
<th>Positive cores</th>
<th>Percentage cancer involvement per single core</th>
<th>Percentage positive biopsy cores</th>
<th>PSA dt (years)</th>
<th>PSA v (ng/ml/year)</th>
<th>cT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dall’Era [16]</td>
<td>Increase</td>
<td>Increase</td>
<td>Increase</td>
<td></td>
<td>>0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ercole [17]</td>
<td>Progression</td>
<td>Increase</td>
<td>Increase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klotz [18]</td>
<td>≥4 + 3</td>
<td></td>
<td></td>
<td></td>
<td><3</td>
<td>Increase cT</td>
<td></td>
</tr>
<tr>
<td>Soloway [19]</td>
<td>(Grade) >3</td>
<td>>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tosoian [20]</td>
<td>>6</td>
<td>>2</td>
<td></td>
<td>>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischia [21]</td>
<td>Upgrade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bul [22]</td>
<td>≥4 + 3</td>
<td>≥3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Godman [23]</td>
<td>Upgrade</td>
<td>≥3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thomsen [24]</td>
<td>≥3 + 4</td>
<td>≥3</td>
<td></td>
<td></td>
<td><3/5</td>
<td>Increase cT</td>
<td></td>
</tr>
<tr>
<td>Selvadurai [25]</td>
<td>≥4 + 3</td>
<td></td>
<td></td>
<td>>50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Updated AS Outcomes

Active Surveillance for Clinically Localized Prostate Cancer—A Systematic Review

FREDERIK B. THOMSEN, MD,1* KLAUS BRASSO, MD, PhD,1 LAURENCE H. KLOTZ, MD, FRCS(C),2
M. ANDREAS RÖDER, MD, PhD,1 KASPER D. BERG, MD,1 AND PETER IVERSEN, MD1

1Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, University of Copenhagen, Denmark
2Division of Urology, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada

• 3550 patients
• Discontinuing AS:
 – At 5 years 33%
 – At ten years 55%
• Survival:
 – 96%-100% at ten years
 – Toronto series – CaP mortality from 3% at ten years to 8% at 15 years

The Future of Active Surveillance

• Screening will be image/risk factor based, hence many fewer biopsies and fewer clinically insignificant cancers

• Avoid ‘cancer’ diagnosis in low risk patients

• In low risk disease: Imaging/biomarker to identify aggressive disease at diagnosis
 – Must be affordable, widely available and reproducible
CURATIVE THERAPY
Risk of Mortality From Prostate Cancer Among Men in a Randomized Trial

695 men randomised to surgery or delayed endocrine intervention

76% T2
11% had PSA detected disease

After median FU of 10.8yrs,
39% of men had died
7% absolute difference in survival for surgical group (14.4% vs 8.6%)
Radical Prostatectomy versus Observation for Localized Prostate Cancer

Timothy J. Wilt, M.D., M.P.H., Michael K. Brawer, M.D., Karen M. Jones, M.S., Michael J. Barry, M.D.,

B Death from Prostate Cancer

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Observation</th>
<th>Radical Prostatectomy</th>
<th>Hazard Ratio (95% CI)</th>
<th>P Value for Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>31/367</td>
<td>21/364</td>
<td>0.63 (0.36–1.09)</td>
<td>0.63</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><65 yr</td>
<td>12/131</td>
<td>6/122</td>
<td>0.52 (0.20–1.39)</td>
<td></td>
</tr>
<tr>
<td>≥65 yr</td>
<td>19/236</td>
<td>15/242</td>
<td>0.68 (0.34–1.33)</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td>0.76</td>
</tr>
<tr>
<td>White</td>
<td>22/220</td>
<td>15/232</td>
<td>0.57 (0.30–1.10)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>7/121</td>
<td>5/111</td>
<td>0.80 (0.25–2.54)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>2/26</td>
<td>1/21</td>
<td>0.56 (0.05–6.17)</td>
<td></td>
</tr>
<tr>
<td>Charlson score</td>
<td></td>
<td></td>
<td></td>
<td>0.63</td>
</tr>
<tr>
<td>0</td>
<td>19/220</td>
<td>14/224</td>
<td>0.69 (0.34–1.37)</td>
<td></td>
</tr>
<tr>
<td>≥1</td>
<td>12/147</td>
<td>7/140</td>
<td>0.54 (0.21–1.38)</td>
<td></td>
</tr>
<tr>
<td>Performance score</td>
<td></td>
<td></td>
<td></td>
<td>0.57</td>
</tr>
<tr>
<td>0</td>
<td>25/310</td>
<td>18/312</td>
<td>0.67 (0.37–1.23)</td>
<td></td>
</tr>
<tr>
<td>1–4</td>
<td>6/57</td>
<td>3/52</td>
<td>0.41 (0.10–1.71)</td>
<td></td>
</tr>
<tr>
<td>PSA</td>
<td></td>
<td></td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>≤10</td>
<td>15/241</td>
<td>14/238</td>
<td>0.92 (0.44–1.91)</td>
<td></td>
</tr>
<tr>
<td>>10</td>
<td>16/125</td>
<td>7/126</td>
<td>0.36 (0.15–0.89)</td>
<td></td>
</tr>
<tr>
<td>Risk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>4/148</td>
<td>6/148</td>
<td>1.48 (0.42–5.24)</td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>13/120</td>
<td>6/129</td>
<td>0.50 (0.21–1.21)</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>14/80</td>
<td>7/77</td>
<td>0.40 (0.16–1.00)</td>
<td></td>
</tr>
<tr>
<td>Gleason score</td>
<td></td>
<td></td>
<td></td>
<td>0.57</td>
</tr>
<tr>
<td><7</td>
<td>15/261</td>
<td>11/254</td>
<td>0.68 (0.31–1.49)</td>
<td></td>
</tr>
<tr>
<td>≥7</td>
<td>15/86</td>
<td>10/98</td>
<td>0.51 (0.23–1.14)</td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing hazard ratio and p-values for different subgroups](attachment://graph.png)
Potential Morbidity of Curative Therapy

Higher Risk Disease

Risk posed by disease - HIGHER

Surveillance

Potential Morbidity of Curative Therapy

Curative Therapy
If Treatment is Reasonable then How do We Decide Upon which Treatment?

• Disease Factors – local tumour stage – very advanced may indicate radiation preferable
• Patient Factors – personal preference, experience of friends, age, prostate size, urinary symptoms, colitis, anticoagulation
• Treatment Modality Factors - the likelihood of successful treatment and side effects.
• These are the issues discussed with the urologist and radiation oncologist
Do cancer cure rates vary between treatments?

• Numerous studies
• Each with their own flaws
• Level 1 evidence-free zone!
• Accumulating evidence of superiority of surgery - particularly for higher risk disease
• Recent meta-analysis of 19 studies (118000 patients) adjusted for patient and tumour factors favours surgery
• PROTECT trial: RCT comparing surgery, RT and Active surveillance has finished recruiting - report due 2016
Surgery— the good and the ugly!

Good
- Most accurate prognosis from surgical pathology
- Early detection of disease persistence so early delivery of salvage therapy possible
- Possible survival advantage but Level 1 data pending...

Ugly
- Disruptive & painful
- Early incontinence common
- Adverse pathology may lead to a requirement for radiotherapy
Radiotherapy – the good and the ugly!

Good
- Avoids a painful wound and catheter
- Minimally disruptive - Continue working through the treatment
- Easy delivery in men who may not be good surgical candidates
- Usually better early erectile function

Ugly
- Assessment of response to therapy delayed – this delays salvage
- Salvage therapy difficult
- Bowel morbidity
- Increased second cancer risk – Rectum and Bladder
- Severe toxicity rare but devastating & repair may not be possible
Summary

1. Diagnostic Workup
 - pre-biopsy MRI, prostate biopsy techniques, minimizing biopsy risk, staging scans

2. Risk Adjusted Management
 - Watchful waiting
 - Active Surveillance
 - Surgical Management